

The MAGIC that MATTERS

A unique surface treatment technology enabling adhesion, release, barrier, bio-molecule immobilisation and more....

Soft Plasma & Molecules

Technology video

Soft Plasma & Molecules

Key differentiators

- Single-step, dry, low energy, easily scalable process
- Fast process
- 30 500 nanometer molecular layer grafted with covalent bonds onto the activated surface
- Durable modification of the chemical composition of the surface
- Extremely wide range of precursor molecules (organic, inorganic, biomolecules, nano-particles,...)
- On any substrate

Molecular Plasma Technology

Ready for Industry

- Highly experienced team with proven track record
- Global After Sales support network
- EC certified equipment
- Statistical Process Control
- In-line quality control system
- Remote Diagnostics
- Seamless integration in your production process

Our DNA

Customized solution design for advanced surface functionalization

MolecularGRIPTM
 Adhesion improvement for difficult-to-bond or sensitive materials or coatings

Silicone-free anti-stick functionality

New barrier solutions

 Superhydrophobicity & hydrophilicity

 Immobilization of biomolecules

Our DNA

Customized solution development with industrial follow-through

Customized Solution
Development Services

Leveraging

- Our Knowhow
- Our IP
- Our Technology

Lab Equipment

Customized Industrial solutions

Business Model

Platform strategy

Development services

Customer funded solution development services => industrialization of the solution

<u>Manufacturing</u>

Pilot production Contract manufacturing

Our DNA

Technology, IP, Knowhow

& Equipment

JV's / Spin-off's

Product or market specific

<u>Partnerships</u>

Joint Development Agreements

Molecular Plasma Technology

Applications and Markets

Adhesion & Release

- Composite structures
- > Fibre treatment
- > Film treatment
- > Textile treatment
- Silicone-free release films

Biomolecule Immobilization

- Anti-microbial
- Wound dressings
- In Vitro Diagnostics
- Microfluidics
- Affinity Purification

Superhydrophobicity, Hydrophilicity & Barriers

- Water-proofing
- Anti-corrosion
- Easy de-icing
- Improved wetting
- Anti-condensation

Case Study

Fluorinated Films

The Problem

Fluorinated plastic films are valued for their resistance and impermeability. However, the integration of the EFEP film into composite structures is very difficult due to its inertness. Previous methods, such as wet chemical and traditional plasma activation of the surface did not meet the customer's requirements.

Our Solution

We solved the customer's problem by grafting adhesion-improvement molecules onto the EFEP film using our proprietary Molecular Plasma Technology. This allowed us to achieve perfect adhesion whilst maintaining the integrity of the EFEP film.

Case Study

Glass

The Problem

The current method of adhesion for items such as rear-view mirrors onto windscreens consists of manually applying a wet chemical primer followed by a resin such as polyurethane. The customer wanted to look at automating the process while reducing the toxicity and quantity of the chemicals used.

Our Solution

We produced a solution that met all technical specifications of its client, a major German luxury car manufacturer. Furthermore, as our solution reduces the use of chemicals by several orders of magnitude and can easily be integrated in their automated manufacturing line, we met all their expectations.

Fibre treatment

Adhesion improvement

Surface chemical groups

Surface functionalisation

- Remove weak boundary layer
- Enhance wettability
- Create active sites for chemical bonding
- Promote mechanical interlocking

Fiber or Tow Plasma gas Ground electrode HV electrode Dielectric Tube Plasma treatment zone Surface roughness Surface area

Continuous treatment

- Fibres, tows & mats
- Any type of fibre
- Any type of substrate

Molecular Plasma Technology

Applications and Markets

Adhesion & Release

- Composite structures
- Fibre treatment
- Film treatment
- Textile treatment
- Silicone-free release films

Biomedical

- > Anti-microbial
- Wound dressings
- > In Vitro Diagnostics
- Microfluidics
- Affinity Purification

Superhydrophobicity, Hydrophilicity & Barriers

- Water-proofing
- Anti-corrosion
- Easy de-icing
- Improved wetting
- Anti-condensation

Case Study

Plasma deposition of IgE

The Problem

Current state of the art for immobilizing antibodies on a substrate (basis for IVD tests) is a multistep, wet chemical process that takes between 24 to 72 hours because of required drying and incubation steps.

Our Solution

We are able to immobilize antibodies on a glass substrate using our proprietary Molecular Plasma process in less than 10 seconds. The samples were tested by the University of Leuven (Belgium) and showed comparable adhesion and biological performance (ELISA) as current standard. We have shown that our process is approx. 10.000 times faster and much simpler than current standard. We anticipate similar performance with other biomolecules such as DNA, RNA, proteins and antimicrobial particles.

Biomedical Technology

Addressable market segments

Segment #1

'Out-of-body' medical consumables

Segment #2

Micro-fluidics

Segment #3

Advanced dressings & patches

Segment #4

Affinity
Purification
Technology

Segment #5

Life Science Technology

Segment #6

Implants & 'In-body' consumables

Molecular Plasma Technology

Applications and Markets

Adhesion & Release

- Composite structures
- Fibre treatment
- Film treatment
- Textile treatment
- Silicone-free release films

Biomolecule Immobilization

- Anti-microbial
- Wound dressings
- In Vitro Diagnostics
- Microfluidics
- Affinity Purification

Superhydrophobicity, Hydrophilicity & Barriers

- Water-proofing
- > Anti-Corrosion
- Easy de-icing
- Improved weeting
- Anti-condensation

Case Study

Protection of natural cork products

The Problem

The company approached us to tackle two problems they are facing with regard to the production of cork. Firstly, the cork reacts with the UV rays in sunlight resulting in a discolouration and secondly, the glued joints become weak as a result of contact with water. The company had tried wet chemical methods to solve these problems, however these resulted in changes of appearance and texture.

Our Solution

Using our super-hydrophobic Leaf Technology in which we incorporated a UV protection molecule, we were easily able to create a water-repellent, UV-protected surface, without altering the appearance or integrity of the cork.

Superhydrophobicity

Tunable performance

- o Superhydrophobic surfaces for water repellent surfaces or self-cleaning properties
- Tunable contact angle

UV Protection

Tunable performance

- Stable UV protection
- o Tested on several substrates: PC, Glass, etc.
- o Tunable

Our Approach

A stage gate process

Gate 0 Proof of Concept

Preliminary screening of potential precursors

Budget: 7 – 15 K€

Gate 1
Finetuning

screening for potential precursors

Budget: 15 – 25K€

Gate 2

Final formulation & process optimization

Budget: 25 – 50K€

Gate 3
Pilot Line

Budget: TBC

Gate 4
Industrial Line

Budget: TBC

Our Roots

A successful combination of 2 spin-offs

January 2017 Technology transfer + 12 patents

License of 1 patent Development partner Ownership 3 Investors & Management

Molecular Plasma Group

Our Core Team

Regis Heyberger CEO & shareholder

- DUT in Science
- PhD from the University of Strasbourg
- Masters in Quality and Innovation
- Expert in robust upscaling of innovative technologies
- 3 patents

Gill Scheltjens CTO & shareholder

- PhD in Polymer Science
- Plasma technology expert
- Ex. VITO employee

Joanna Borek-Donten Principal scientist

- PhD in Chemistry
- Nanotechnology specialist

Jan Vansant Investor & board member

- Experienced entrepreneur
- Innovation expert
- PhD in polymer science and photochemistry
- 26 patents + several publications

Marc Jacobs Investor & chairman

- Experienced entrepreneur
- Masters in Engineering
- Sloan Masters in Leadership & Strategy from LBS (UK)

Our Key Partners

www.molecularplasmagroup.com

info@molecularplasmagroup.com

+352 545 580 461

Book a discovery day

to find out how our technology can bring value to you

LET'S MAKE IT HAPPEN

